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1 Inseparability and Perfect Fields

1.1 Towers of separable extensions

Proposition 1.1. Let E/F be finite, and let EmbF (E) be the set of embeddings Φ : E → F
fixing F. Then |EmbF (E)| divides [E : F ], with equality iff E/F is separable.

Proof. Let e = |EmbF (E)| and E = F (α1, . . . , αn). Let Ei = F (α1, . . . , αi=1, and let ei
be the number of embeddings in EmbF (Ei+1) extending an embedding in EmbF (Ei). We
know that ei | [Ei+1 : Ei] and we get equality iff Ei+1/Ei is separable. This is because
this is the number of distinct conjugates of αi over Ei times the multiplicity (number of
conjugates times multiplicity is the degree of the polynomial). Now e =

∏n
i=1 ei, so E/F

is separable.
If e = [E : F ], take β ∈ E. The number of conjugates of β ∈ F is d = |EmbF (F (β))|,

which divides [F (β) : F ]. The number of extensions of any such embedding to E → F
divides c = [E : F (β)]. Now cd = e = [E : F ], so d = [F (β) : F ], since d divides it and
c | [E : F (β)]. Then F (β)/F is separable.

Proposition 1.2. If K/E/F are salgebraic, and K/E and K/F is separable, then K/F
is separable.

Proof. In the case of finite degree, this follows from the previous proposition. In general,
any α ∈ K has minimal polynomial over E which has coefficients in a finite extension
E′/F . So E′(α)/E′/F is finite, E′(α)/E′ and E′/F are separable. So, by the finite case,
α is separable over F . This is true for all α ∈ K, so K/F is separable.

1.2 Purely inseparable extensions and degrees of separability and insep-
arability

Definition 1.1. An extension E/F is purely inseparable if every α ∈ E \F is insepara-
ble. Equivalently, E/F is separable it has no nontrivial intermediate separable extensions
over F .
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Example 1.1. Fp(x)/Fp(x
p) is purely inseparable because it has degree p and because the

minimal polynomial of x is tp − xp = (t− x)p.

Corollary 1.1. The set of all separable elements in an extension K/F (call it E) is a
field, and K/E is purely inseparable.

Definition 1.2. Suppose K/F is finite, and E is a maximal separable subextension. Then
the degree of separability of K/F is [K : F ]s = [E : F ]. The degree of inseparability
if [K : F ]i = [K : S].

Lemma 1.1. Let E/F is algebraic, f ∈ E[x] be monic, and m ≥ 1 such that fm ∈ F [x].
Then either m = 0 in F or f ∈ F [x].

Proof. Let f =
∑n

i=0 aix
i be monic, and suppose that f /∈ F [x]. Let i ≤ n− 1 be maximal

such that ai /∈ F . Let c be the coefficient of x(m−1)n+i in fm. This is not in F , since c is a
sum of terms all in F (involving only aj with j > i and 1 term coming from aia

m−1
n = ai).

So c−mai ∈ F , which means ai ∈ F or m = 0 in F . But ai /∈ F .

Proposition 1.3. Let char(F ) = p. If E/F is purely inseparable and α ∈ E, then there

exists a minimal k ≥ 0 such that αpk ∈ F , and the minimal polynomial of α is xp
k − αpk .

Proof. Let α ∈ E \ F have minimal polynomial f =
∏d

i=1(x − αi)
m ∈ F [x]. Of m > 1,

then f = gm where g =
∏d

i=1(x − αi). Then m = pkt, where p - t ,and k ≥ 1 by the

lemma. Then f = (gp
k
)t ∈ F [x]. So the lemma forces t = 1 since p - t. Letting ai = αpk

i ,

we get f =
∏d

i=1(x
pk − ai). Then f = h(xp

k
), where h =

∏d
i=1(x − ai) ∈ F [x]. This is a

separable polynomial, so F (ai)/F is separable for each i. Since E/F is purely inseparable,

each ai ∈ F . Since F is irreducible, we get d = 1. So f = xp
k − αpk

i .

Corollary 1.2. If E/F is finite and char(F ) = p, then [E/F ]i is a power of p.

Proposition 1.4. [K : F ]s = |EmbF (K)|.

Corollary 1.3. Degrees of separability and inseparability are multiplicative in extensions.

1.3 Perfect fields

Definition 1.3. A field is perfect if every algebraic extension of it is separable.

Example 1.2. Fp is perfect. Finite extensions are Fpn , which is generated by the roots of
xp

n − x, which has pn distinct roots. So these extensions are separable.

Theorem 1.1. Every field of characteristic 0 is perfect.

Proof. Let char(F ) = 0. Then every irreducible monic polynomial is f =
∏d

i=1(x−αi)
m ∈

F [x]. Then f = gm, where g ∈ F [x]. So g ∈ F [x] by the lemma. Since f is irreducible,
m = 1.
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1.4 The primitive element theorem

Definition 1.4. An extension E/F is simple if E = F (α) with α ∈ E. Here, α is called
a primitive element for E/F .

Theorem 1.2 (primitive element theorem). Every finite separable extension is simple.

Proof. If F = Fq, then Fqn , where Fq(ξ), where ξ is the primitive (qn−1)-th root of 1. Now
we may assume that F is an infinite field. It suffices to show that any F (α, β)/F (with α, β
algebraic) is simple. Look at γ := α+ cβ for c ∈ F \ {0}. Since F is infinite, we can choose
c 6= (α′ − α)/(β′ − β), where α′ is a conjugate of α and same for β. Then γ 6= α′ + cβ′ for
all such α′, β′. Let f be the minimal polynomial of α, and let h(x) = f(γ − cx) ∈ F (γ)[x].
Now h(β) = f(α) = 0. Then h does not have any other β′ as a root. We will finish this
next time.
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